Supplemental Material to Network Plasticity as Bayesian Inference

نویسندگان

  • David Kappel
  • Stefan Habenschuss
  • Robert Legenstein
  • Wolfgang Maass
چکیده

where μ1 = 0.3, μ2 = 0.9, σ1 = 0.1, σ2 = 0.2 and c = 0.3. In Fig. 1D we used a prior pS(θ) = pS(θ1)pS(θ2), with pS(θi) given by a normal distribution (μ = 0.3, σ = 0.35). A learning rate of η = 0.005 was used to sampled trajectories which had a length of 50 and 300 time steps in Fig. 1C and F, respectively. In Fig. 1F the time-discrete version of the synaptic sampling algorithm (7) was used, with N = T = 1. In Fig. 1C the same dynamics were used, but the diffusion term and the contribution of the prior ∂ ∂θi log pS(θ) were set to zero.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Green Supply Chain Risk Network Management and Performance Analysis: Bayesian Belief Network Modeling

With the increase in environmental awareness, competitions and government policies, implementation of green supply chain management activities to sustain production and conserve resources is becoming more necessary for different organizations. However, it is difficult to successfully implement green supply chain (GSC) activities because of the risks involved. These risks alongside their resourc...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraints

Recent spiking network models of Bayesian inference and unsupervised learning frequently assume either inputs to arrive in a special format or employ complex computations in neuronal activation functions and synaptic plasticity rules. Here we show in a rigorous mathematical treatment how homeostatic processes, which have previously received little attention in this context, can overcome common ...

متن کامل

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015